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( Handbook of Mathematical Functions, 1972, equation 
22.9.15), 

( I - Z )  -'~-' exp[-XZ/ ( l±Z)]  = ~ L~(X)Z", 
rl=O 

(a3) 

can be used with (AI) to rewrite (A2) as 

F =  2 /+2 exp [-yr(1 + Z ) / ( I  -Z)]jt(Kr) dr 
=0 

× Z " / ( 1 - Z )  2'+3. (a4) 

The integral in (A4) may be evaluated in simple 
closed form [Epstein & Stewart, 1977, equation (A2)]. 
With some algebraic rearrangements, 

(21+2)!(K/y)' 
F= (21 + 1)!!y'+3[1 + ( K / y ) 2 ]  '+2 

(1 +z)  
× 

,,=o (12_, _2tZ+Z2)t+2Z", (A5) 

where 

t=[(K/y)2-1]/[(K/y)2+l]. (A6) 

From the generating function for a Gegenbauer poly- 
nomial (Handbook of Mathematical Functions, 1972, 
equation 22.9.3), we can write (AS) as 

(21+2)!(K/y)' 
F= 

(2l+ 1)!!y'*~[1 +(K/y):] '÷: 
oo 

,e-~(I+2)( x ~ [C~/+2~(t) +~._l ,t)]z". (A7) 
n=0 

The Gegenbauer polynomial, CC,~+2)(t), may be 
expressed as a Jacobi polynomial, P~;+3/2.t+3/2)(t) 
(Handbook of Mathematical Functions, 1972, equation 
22.5.20). The sum of the two polynomials in (A7) 

then satisfies a recurrence relation for Jacobi poly- 
nomials (Handbook of Mathematical Functions, 1972, 
equation 22.7.19). Thus (A7) can be simplified to 

F=(K/y)ty-(t+3)[1 +(K/y)2] -(t+2) 

x~__,°° 2"(n(2n +2l+l)Vv+2l+2)! p~t+3/2,1+j/2)(t)Zn. (A8) 
n = 0 " " 

In comparing (A2) to (A8), we have the desired result, 

(K/y)t2"(n +2l +2)! 
f,,,t ( K ) = yt+3[l +(g/y)2]~+2(2n +2l + l)!! 

x p~+a/2,t+l/2)(t). (A9) 
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Abstract 

A hierarchy of classifications for subgroups of space 
groups by means of Euclidean and affine normalizers 
is introduced. The different levels of this classification 
scheme are illustrated in detail with examples and its 
usefulness for various problems is demonstrated. The 
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Euclidean (or affine) normalizers of a space group G 
and of one of its subgroups U may either coincide 
[N(G)=N(U)], or form a group-subgroup pair 
[N(G)D N(U) or N(G)c  N(U)],  or share only a 
common subgroup [N(G)7~N(U) and N ( G ) ¢  
N(U)].  The different implications of these cases on 
the equivalence classes of subgroups (or supergroups) 
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594 GROUP-SUBGROUP RELATIONS BETWEEN SPACE GROUPS 

are discussed. A procedure is given to calculate the normalizers. The same concept may be applied to 
number of equivalent subgroups or supergroups, other crystallographic groups without problems. 

1. Introduction 

The symmetry properties of any group G are com- 
pletely described in a mathematical sense by the 
automorphism group of G. It may be appropriate for 
certain problems, however, to take into account only 
some of these symmetry properties. A typical example 
is formed by the crystallographic point group 2 /m = 
{1,1,2, m}. The group elements l, 2 and m are 
mapped onto each other by outer automorphisms, 
i.e. from the group-theoretical point of view, the 
inversion, the twofold rotation and the reflection play 
an analogous role within this group. For most crys- 
tallographic problems, however, these symmetry 
operations have to be distinguished. In such a case 
it may be useful to embed G into a supergroup, and 
to consider the symmetry of G within this supergroup, 
instead of the automorphism group of G. This leads 
to the concept of normalizers. 

The normalizer N H ( G )  of a group G with respect 
to any supergroup H D G is defined as the set of all 
elements h ~ H that map G as a whole onto itself: 

NH( G) := {h ~ H[hGh-Z = G}. 

As N n ( G )  is always a supergroup of G, it is an 
advantage of normalizers against automorphism 
groups that the elements of G and the elements of 
any of its normalizers are elements from the same set 
and, therefore, necessarily have certain properties in 
common. 

If G, for example, is a crystallographic group of 
motions, i.e. a space group or any subgroup of a space 
group, and if the group E of all Euclidean mappings 
is chosen as supergroup H then the group G and its with 
Euclidean normalizer NE(G)  may map the same 
objects (points, patterns, crystal structures etc.) onto 
another and define equivalence relations in this way. 
In the paper by Fischer & Koch (1983) this property 
is used for the definition of equivalent descriptions 
of a crystal structure and of equivalent crystallo- 
graphic point configurations. Within that paper 
detailed tables of the Euclidean normalizers of all 
space groups are given. Additional tables contain the 
transformations needed for the derivation of all 
equivalent point configurations or all equivalent 
descriptions of a crystal structure. The following 
authors also give tables of the Euclidean and /or  the 
affine normalizers or of the automorphism groups of 
the space groups: Hirshfeld (1968), Koch & Fischer with 
(1975), Burzlaff & Zimmermann (1980), Gubler 
(1982a), Billiet, Burzlatt & Zimmermann (1982). 

Within the present paper the problem of equivalent 
subgroups or supergroups of space groups will 
be discussed making use of affine and Euclidean 

2. Classification of subgroups of space groups 

Group-subgroup relationships are defined for space 
groups rather than for space-group types. This 
becomes obvious if group and subgroup belong to 
the same type. Nevertheless, some properties in con- 
nection with group-subgroup relations may be trans- 
ferred to types of groups. In general, this is not the 
case for properties based on Euclidean norrnalizers 
(cf  e.g. Fischer & Koch, 1983): a space group of type 
P222~ has a Euclidean normalizer of type Pmmm, if 
a ~ b, but of type P4/mmm,  if a = b. 

If G is a space group and if UI, U2, U 3 , . . . ,  U, 
are subgroups of G with the same finite index i, it is 
possible to define for these subgroups a hierarchy of 
classifications into equivalence classes. 

(1) Two subgroups Ui and UR of a space group G 
are called isotypic if they are conjugate subgroups of 
the group A of all affine mappings within g 3, i.e. if 
there exists an affine mapping a ~ A that transforms 
U~ into Uk by conjugation: 

Uk = aUia -I with a e A. 

Isotypic subgroups always belong to one and the same 
class out of the 219 classes of isomorphic space 
groups, i.e. to the same space-group type. 

(2) Two subgroups U~ and Uk of a space group 
G are called equivalent with respect to the affine 
normalizer (for short: affine-equivalent or N,~ 
equivalent), if they are conjugate subgroups of the 
affine normalizer NA(G) of the space group G: 

Uk = aUia -1 

aCNA(G) 

and 

NA(G) = {a ~ A[aGa-'  = G}, A = a n n e  group. 

Anne-equiva lent  subgroups necessarily are also 
isotypic. 

(3) Two subgroups Ui and Ilk of a space group G 
are called equivalent with respect to the Euclidean 
normalizer (for short: Euclidean-equivalent or Ne 
equivalent), if they are conjugate subgroups of the 
Euclidean normalizer N~ (G) of the space group G: 

- l  Uk=eUie 

e~ NE(G)  

and 

NE (G) = {e ~ E]eGe -~ = G}, E = Euclidean group. 
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Euclidean-equivalent Subgroups necessarily are also 
affine-equivalent and, therefore, isotypic. 

(4) Two subgroups Ui and Uk of a space group G 
are called conjugate if they are mapped onto each 
other by conjugation with an element g ~ G: 

U k = gU, g -~ with g ~ G. 

Conjugate subgroups necessarily are also Euclidean- 
and affine-equivalent and, therefore, isotypic. 

If the affine normalizer of a space group G 
coincides with its Euclidean normalizer the symbol 
N(G) will be used instead of NA(G) or NE(G) in 
the following. In such a case 'equivalent subgroups' 
will be used instead of 'affine-equivalent' or 
'Euclidean-equivalent subgroups'. 

The different levels of classification will be illus- 
trated by two examples. The derivation and the com- 
pleteness of the lists of subgroups is not discussed 
here, but the existence of all the subgroups may easily 
be verified by the subgroup data in International 
Tables of Crystallography (1983) in connection with 
the symmetry diagrams. 

Example (i): equivalence classes of the subgroups 
with index 2 of a space group of type C222 (basis 
vectors a, b, c). There exist 15 subgroups of index 2 
which belong to nine classes of isotypic subgroups: 

C112(a, b, c )~  P 2 ( l a - I b ,  ½a +½b, c) 

C211 (a, b, c) -~ B2(b, c, a) 

C 121 (a, b, c) ~ B2(a, c, - b )  

P222(a, b, c) 

P21212(a, b, c) 

P22,2(a, b, c) ~ P2221 (c, a, b) 

P2~22(a, b, c) ~ P2221 (b, c, a) 

C222(a, b, 2c; 0, 0, 0) 

C222(a, b, 2c; 0, 0, I) 

C222~ (a, b, 2c; 0, 0, 0) 

C222t (a, b, 2c; 0, 0, I) 

I222(a, b, 2c; 0, 0, 0) 

I222(a, b, 2c; 0, 0, I) 

I212~2~ (a, b, 2c; 0, 0, 0) 

I212121 (a, b, 2c; 0, 0, I). 

The two isotypic subgroups C211 and C121 (B2 in 
standard setting with c axis unique) differ from each 
other in the orientation of their symmetry elements. 
The same is true for P2212 and P2~22 (standard 
setting P222~). Within the other pairs of isotypic 
subgroups (space-group types C222, C222~, I222, 
I2~212~) the symmetry elements of both subgroups 
have the same orientation, but are shifted against 

each other by ½c referred to the basis of the original 
group. 

The affine normalizer NA(C222) is a group of affine 
mappings isomorphic to P4/mmm and with basis 
vectors ½a, ½b, ½c. The two subgroups of the pair 
C211-C121 and of P22~2-P2~22 are mapped onto 
each other by the affine analogue of the fourfold 
rotation, the two subgroups of the classes C222, 
C222t, 1222, and I2t 2~ 2~, respectively, by a transla- 
tion of ½c, which also is an element of NA(C222). 
Consequently, the classes of isotypic subgroups with 
index 2 of a space group C222 coincide with the 
classes of affine-equivalent subgroups. 

The Euclidean normalizer NE(C222) is a space 
group of type Pmmm with basis vectors ½a, Ib, ½c, 
provided that a ~ b for C222. NE (C222) again maps 
the two subgroups of the types C222, C222~, 1222, 
and I212121, respectively, onto each other because 
the translation of ½c also belongs to NE(C222). 
NE (C222), however, contains no elements that map 
C211 onto C121 or P2212 onto P2122. Therefore, 
C222 has 11 classes of Euclidean-equivalent sub- 
groups of index 2. 

In this example there do not exist pairs of conjugate 
subgroups because all subgroups of index 2 are nor- 
mal subgroups, i.e. each of the 15 subgroups of index 
2 forms a class of conjugate subgroups by itself. 

Example (ii): a space group of type Pm3m and its 
subgroups of index 6 that belong to space-group type 
14/mcm. In total there exist 12 such subgroups, four 
with tetragonal axes in each of the directions a, b and 
c. The corresponding vector bases are b - c ,  b + c, 2a; 
c - a ,  c +a,  2b; a - b ,  a +b, 2c, respectively. The four 
subgroups with their tetragonal axes in the same 
direction differ in the sites of their origins referred to 
the standard description of 14/mcm (cf. Billiet, 1981). 
For example, the points 0, 0, 0; I, I, 0; 0, 0, I; and 
~, ~, ½ (referred to the unit cell of Pm3m) are the 
origins of the four subgroups with fourfold axes in 
the c direction of Pm3m. 

The 12 subgroups considered form four classes of 
conjugate subgroups. Each such class consists of three 
groups, the symmetry patterns of which are mapped 
onto each other by a threefold rotation out of Pm3m. 
In this case, the Euclidean normalizer NE (Pm3m) = 
lm3m (basis vectors a, b, c) is identical with the affine 
normalizer. The translation by ½a+Ib+½c combines 
the four classes of conjugate subgroups into two 
classes of Euclidean- (and affine-) equivalent sub- 
groups. The difference between the subgroups of these 
two classes becomes obvious by looking at Wyckoff 
position 4(c) 0, 0, 0 of 14/mcm (site symmetry 4/m). 
For one class this Wyckoff position originates from 
Wyckoff positions l (a)  0, 0, 0 or l(b) I, I, ½ of space 
group Pm3m (site symmetry m3m), for the other 
class, however, it originates from Wyckoff positions 
3(c) 0, I, ½ or 3(d) ½, 0, 0 (site symmetry 4/ mmm ). The 
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subgroups from the two different equivalence classes, 
therefore, play different roles with respect to the 
structure of the original group. 

The second example in addition illustrates a further 
general feature of the classification scheme. The sub- 
groups 14/mcm with index 6 are not maximal sub- 
groups of Pm3rn, but the four groups with the same 
direction of their fourfold axes stem from a common 
intermediate group of type P4/rnmm with the same 
unit cell as Pm3m. With respect to P4/mmm these 
groups 14/mcm are subgroups of index 2 and, there- 
fore, normal subgroups. The Euclidean normalizer of 
P4/mmm is a space group which also belongs to class 
P4/mmm, but with basis vectors ½a-½b, ½a+½b, ½c. 
The additional translations of this normalizer map 
all four subgroups 14/mcm of P4/mmm onto each 
other, i.e. all four subgroups 14/mcm are Euclidean- 
equivalent with respect to the intermediate group 
P4/mmra. This means that equivalence properties, as 
defined above, cannot be transferred within a chain 
of subgroups. 

The different levels of the hierarchic classification 
of subgroups are of interest for different types of 
problems. 

Under normal pressure the crystal structure of 
K2Zn(CN)4 belongs to the spinel type (CN dumb- 
bells instead of oxygen atoms), but its symmetry 
Fd3m decreases under high pressure to R3c (index 
8) and quartets are formed (Ahsbahs, 1979). For each 
component of such a quartet the threefold axes 
parallel to another one of the four space diagonals 
of Fd3m are preserved. The corresponding four sub- 
groups R3c are conjugate in Fd3m. 

The possibilities of a crystal structure to deform in 
the course of a phase transition may be discussed 
without distinguishing conjugate subgroups of the 
original group. Subgroups that are Euclidean- 
equivalent but not conjugate, however, have to be 
regarded separately because each class of conjugate 
subgroups corresponds to another type of deforma- 
tion. This has recently been discussed by Billiet ( 1981 ) 
for the example of tetragonally distorted perovskite 
structures with symmetry 14/mcm [cf. also example 
(ii)]. Each of the four classes of conjugate subgroups 
I4/mcm of space group Pro3 rn (index 6) corresponds 
to a specific kind of deformation of the perovskite 
structure. 

For the derivation of types of colour groups with 
i different colours, classes of affine-equivalent sub- 
groups of index i may be used. Each group-subgroup 
pair exactly corresponds to one colour group. If two 
subgroups are affine-equivalent, the two correspond- 
ing colour groups are not essentially different, i.e. 
they belong to the same type. If, on the contrary, the 
two subgroups cannot be mapped onto each other by 
the affine normalizer (or the automorphism group) 
of the group the corresponding group-subgroup pairs 
define two essentially different colour groups (cf. e.g. 

Jarratt & Schwarzenberger, 1980; Nabonnand & 
Billiet, 1983; Senechal, 1983). 

3. Types of group-subgroup relationships between 
space groups 

Each group-subgroup relationship between a space 
group G and one of its subgroups U with finite index 
i corresponds to one of the following four cases 
defined by the Euclidean (or the affine) normalizers 
N(G) and N ( U )  of both groups: 

(1) the normalizers of G and U coincide: 

N(G)=N(U) ;  

(2) the normalizer of G is a supergroup of the 
normalizer of U: 

N(G)DN(U);  

(3) the normalizer of G is a subgroup of the 
normalizer of U: 

N ( G ) c  N ( U ) ;  

(4) there does not exist a group-subgroup relation- 
ship between the normalizers of G and U: 

N(G)~  N(U) andN(G)¢ N(U). 

For the cubic space groups, Fig. 1 gives a group-- 
subgroup diagram in which in addition the Euclidean 
normalizer (identical with the affine normalizer within 
the cubic system) of each group is indicated. The 
diagram is complete in the sense that it contains the 
maximal subgroups (except the infinitely many 
isomorphic ones) for one representative of each cubic 
space-group class. It has to be noticed, however, that 
each class of Euclidean-equivalent subgroups is rep- 
resented only once. The colour of a space-group 
symbol characterizes the corresponding normalizer, 
the space-group symbol of which is framed in that 
colour. The position of the space-group symbols 
within the diagram indicates the subgroup index: 
consecutive levels correspond to index 2. The relation 
between the unit cells of a group-subgroup pair fol- 
lows directly from the index and the Bravais types of 
both groups. 

Within the cubic crystal family only cases (1), (2) 
and (3) occur if only maximal subgroups are con- 
sidered. If group and subgroup have the same nor- 
malizer (case 1 ), the corresponding line in the diagram 
has been drawn in the colour of that normalizer. If 
the normalizer changes the corresponding line is 
black, a full line representing case (2), a broken line 
case (3). 

Only the space groups of classes lm3m and la3d 
coincide with their own Euclidean and affine nor- 
malizers. According to a theorem by Bieberbach 
(1912), each automorphism of a space group corre- 
sponds to at least one affine mapping of the space 
group onto itself. As a consequence, space groups of 
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Pn3n~.~ Im3_ I~3m I432 Pm3n 

Fm3c~.._ P432.. ,..,~K-..3m Pn3"--- Z23"v ~Pm3 3n Fd3m Fd3c 

,~  / / F ~  IFm2 I I ~ ~  P~  

Pm3m 

P4232 P4 32 Pro3 Pn3 

z;3z z;s~ ~ I/:23 

PT+3m I23 I P,~3n 

,°23 

Fd3 Fz 
s 

,132 

I,~3d 

Pa3 Z2~3 

"%" I 
P213 

P4,~2 

Fig. 1. Group--subgroup diagram for cubic space groups: Euclidean normalizers are marked by coloured frames. The normalizer of 
each space group is indicated by the same colour for the space-group symbol and the frame of the normalizer symbol: red symbolizes 
the normalizer Im3m, blue Ia3d, green Prn3m, and brown Pn3m: Ia3 is the normalizer of Pa3 (purple), and I4132 the normalizer 
of the enantiomorphic pair P4132, P4332 (dark green). 

[ To face p. 596 
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classes lm3m and la3d have no outer automorph- 
isms, i.e. they are the only complete groups among all 
space groups (cf e.g. Gubler, 1982a, b). 

N(G) = N(U) :  Group-subgroup relationships of 
type (1) occur between class-equivalent groups as 
well as between translation-equivalent groups (cf Fig. 
I). Examples are the pairs 143m-P43m with the 
common normalizer lm3m and 143d-I213 with nor- 
malizer Ia3d. Group-subgroup relationships of this 
kind may also exist between space groups from differ- 
ent crystal systems. Each space group Fro3 has a 
translation-equivalent maximal subgroup of type 
Fmmm, but with specialized cubic unit cell. The nor- 
malizer of Fm3 is Pm3m with lattice constants ½a; 
the Euclidean normalizer of such a subgroup Fmmm 
is identical with its affine normalizer and coincides 
with the normalizer of Fro3. In contrast to this, the 
normalizers of the 'analogous' pair Pm3-Pmmm 
differ from each other: Nv. (Pro3) = Im3m(a, b, c), but 
NL(Pmmm) = Pm3m(½a, ½b, ½c). A different aspect is 
demonstrated by a group of type Cmmm and its four 
isotypic subgroups of index 4 with the same unit cell: 
P2/ml l ,  P12/ml, P l l2 /m (origin at 0, 0, 0), and 

l 0). Cmmm and all these four Pi 12/m (origin at ~, ~, 
subgroups have the Euclidean normalizer 
Pmmm(½a, ½b, ½c) in common, i.e. all four subgroup 
relationships belong to type (1). Therefore, no two 
of these isotypic subgroups are Euclidean-equivalent. 

N(G) ~ N( U): Group-subgroup relationships of 
type (2) seem to be confined to class-equivalent sub- 
groups, if only maximal subgroups are considered. 
Examples are the group-subgroup pairs Pm3- 
Fm3(2a, 2b, 2c) and P432-1432(2a, 2b, 2c) with the 
corresponding normalizers N(Pm3) = lm3m, 
N(Fm3) = Pm3m and N(P432)=  lm3m, N ( I 4 3 2 ) =  
lm3m(2a, 2b, 2c). The second example shows a 
~'emarkable feature: though the normalizers of group 
and subgroup belong to the same space-group type 
1m3m, they differ because the basis vectors of 
N(I432) are twice as long as the basis vectors 
of N(P432). The orthorhombic pair Cmmm- 
1mmm(a,b, 2c) forms a similar example: the 
Euclidean normalizers N~ (Cmmm) = 
Pmmm(½a, ½b, ½c) and NE( lmmm)= Pmmm(½a, ½b, c) 
differ in their translation periods parallel to c only. 
Additional examples are most isomorphic subgroups. 
In this case the normalizers of group and subgroup 
obviously belong to the same type but have different 
translation periods. Exceptions may either be caused 
by specialized metric of group or subgroup or by 
enlargement of a translation period in a degenerate 
direction (cf Fischer & Koch, 1983) of the nor- 
malizers. 

N(G) c N( U): Group-subgroup relations of type 
(3) are less frequent than those of types (1) and (2). 
In the case of maximal subgroups they occur mostly 
in connection with translation-equivalent subgroups. 
Typical examples from the cubic crystal system are 

the pairs Fm3-F23 and P4~ 32-P2~ 3 with normalizers 
N(Fm3) = Pm3m(½a), N(F23) = Im3m(½a) and 
N(P4132) = 14132, N(P213) = la3d, respectively. A 
somewhat different example is supplied by the pair 
P6/mmm-P6mm. The Euclidean (and affine) nor- 
malizer of P6/mmm is an isomorphic supergroup 
with half the translation period in the c direction, 
N(P6/mmm) = P6/mmm(a, b, ~c). The normalizer 
of P6mm has infinitesimally short translations in the 
c direction and, therefore, is no space group but a 
supergroup of a space group, N(P6mm)= 
Z16/mmm(a, b,/~,c) ~ P6/mmm(a, b, ½c). One of the 
exceptional examples for a group-subgroup relation- 
ship of type (3) between class-equivalent groups is 
the pair R3-P3 with 

N(R3)  = Z131m(]a +~b+,  -~a  +~b,/xc) 

and 

N(P3) = Z 16/mmm(]a + ~b, - ~a + ~b, ~c), 

where N(R3)  is a true subgroup of N(P3).  Such 
exceptions seem to be connected with a change 
of the Bravais system within a crystal family (for 
the terms Bravais system and crystal family see 
Wondratschek, 1983). 

N(G)7~N(U)  and N ( G ) ¢ N ( U ) :  Group-sub- 
group relationships of type (4) are frequently but not 
necessarily connected with a change of the crystal 
family. The following examples illustrate two differ- 
ent situations (affine groups are symbolized in 
analogy to the isomorphic space groups). 

(i) The translation subgroup of the normalizer is 
more comprehensive for the subgroup than for the 
original group; the crystal class, however, is higher 
for the group than for the subgroup: 
Pm3m-P4/mmm with normalizers 

N(Pm3m)  = lm3m 

and 

N( P4/ mmm) = P4/ mmm(½a-½b, ~a +~b, ½e); 

Pmmm-Pmm2 with affine normalizers 

NA(Pmmm)= Pm3m(½a, ½b, ½c) 

and 

NA(Pmm2) = Z~4/mmm(½a, ½b,/~e). 

(ii) The translation subgroup of the normalizer is 
more comprehensive for the group than for the sub- 
group; the crystal class, however, is higher for the 
subgroup than for the group: 
Pmma-Pmmn(a, 2b, c) with affine normalizers 

NA ( Pmma) = Pmmm(½a, ½b, ½c) 

and 

NA( Pmmn) = P4/ mmm(½a, b, ½c)" 
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R 3 m - P 3 m l  with normalizers 

N ( R 3 m ) =  R 3 m ( - a , - b ,  ½c) 

and 

N (P3m 1 ) = P 6 / m m m ( a ,  b, ½c). 

The following theorem holds for group-subgroup 
relations between class-equivalent space groups. 

Theorem: The normalizer N ( U )  of a class- 
equivalent subgroup U of a space group G cannot 
contain translations other than those of the nor- 
malizer N ( G )  of the group G itself. 

Proof: If i is the subgroup index of U in G, then 
G may be subdivided into i cosets of U" 

G =  U u  t~ U u  t 2 U u . . . u  t~_~ U. 

As the groups G and U are class-equivalent each 
coset of U may be represented by a translation tj. If 
t ~ N ( U )  also is a translation, it commutes with all 
elements tj ~ G: 

tGt -I = t( U w t~ U w t2 U w . . . w t~_l U) t  -I 

= rUt -~ u ttl Ut -j w tt2 Ut -~ w . . . w  tt~_l Ut -1 

= tUt-~w t l t U t - l w  t 2 t u t - l u . . . w  t~-t tUt -~ 

= U u  tl U w  t 2 U w . . . u  t i _  1 U = G. 

Each translation from N ( U )  maps the group G onto 
itself, i.e. also belongs to N ( G ) .  

For crystal families other than the cubic one the 
relations between group-subgroup pairs and their 
normalizers cannot be represented as simply as in 
Fig. 1 for the following reasons: (1) the only 
complete space groups are the cubic groups lm3m 
and la3d and, therefore, natural 'summits'  are lack- 
ing for the other crystal families; (2) for non-cubic 
space groups maximal isomorphic subgroups play a 
far more important role. As a consequence, each 
non-cubic subgroup diagram has to contain a large 
number of isomorphic subgroups (with different basis 
vectors) in order to be complete in the sense used 
above. This, however, results in diagrams that are 
difficult to survey and hardly representable at all. 

4. Calculation of the number of conjugate, Euclidean- 
or afline-equivalent subgroups 

For each subgroup U of a space group G the number 
of conjugate subgroups may be calculated with the 
aid of the Euclidean normalizer NE (U).  The intersec- 
tion of G with N E ( U )  exactly contains all those 
elements of G which map U onto itself, i.e. 
G n NE( U ) =  NG( U). If Nc,( U ) =  G, U is a normal 
subgroup of G. Otherwise, the index of N o ( U )  
in G gives the number j of subgroups conjugate 

to U. Example: 

G = F23, U = P23, NE ( U ) =  lm3m. 
The subgroup U can be chosen such that the conven- 
tional unit cells (and origins) for all three groups are 
identical. 

N ~ ( U ) = I m 3 m ~ F 2 3 = P 2 3 ,  j = 4 .  

There exist three further subgroups of type P23 
(origins at 0, I, ½; ½, 0, ~ and ~, ½, 0, referred to the unit 
cell of F23) which are conjugate to U. In addition, 
four other subgroups of type P23 exist which are 
conjugate to each other but not conjugate to the first 

1 1 1 .  ones (origins at ~, ~, ~, I, 0, 0; 0, ½, 0; 0, 0, ½). 
The number of Euclidean- or affine-equivalent sub- 

groups of a space group may easily be calculated if 
the normalizers of group and subgroup are known. 
For this, the types of group-subgroup relations 
defined in § 3 will be treated separately. 

(1) N ( G ) = N ( U ) "  Each element of the nor- 
malizer of G simultaneously is an element of the 
normalizer of U. Consequently no additional sub- 
groups can exist which are equivalent to U with 
respect to N ( G ) ,  and U is a normal subgroup. 

(2) N ( G ) D  N ( U ) :  If j is the index of N ( U )  in 
N ( G ) ,  then N ( G )  may be subdivided into j cosets 
of N ( U ) .  Each of these cosets [except N ( U )  itself] 
maps U onto another equivalent subgroup of G. 
Examples: 

G = Pro3 N ( G )  = lm3m 

U I : Fm3(2a) N ( U , )  = Pm3m jl = 2  

U2 = la3(2a) N(U2) = la3d(2a) j2=8.  

Because of jl =2,  each space group Pro3 has two 
equivalent subgroups Fro3 with index 2; in the stan- 
dard setting these two subgroups differ in the site of 
their origins (0, 0, 0 and I, I, I, referred to the unit 
cell of Pm3). As each subgroup of index 2 is a normal 
subgroup, these two subgroups are not conjugate. 
From j2 = 8 it follows that there exist eight equivalent 
subgroups Ia3 of Pm3 with origins at 0, 0, 0; 1, 0, 0; 
0,1 0 ; 0 , 0 , 1 ;  I 1 1.3 , , ~, ~' ~, ½, ½; ½, 3, I; I, I,-32 (referred to 
the unit cell of Pro3). The first four of these are 
mutually conjugate and so are the last four, as the 
index 4 of N~(U2) = la3(2a) in G shows. 

(3) N ( G ) c  N ( U ) :  As each element of N ( G )  is 
also an element of N ( U ) ,  there cannot exist sub- 
groups equivalent to U [cf. also (1)]. 

(4) N ( G ) ; ~  N ( U )  and N ( G ) ¢  N ( U ) :  In such a 
case there always exists a largest common subgroup 
M of N ( G )  and N ( U ) ,  M = N ( G ) n N ( U ) .  The 
index of M in N ( G )  gives the number of subgroups 
equivalent to U. Example: 

G =  R3m N ( G ) =  g 3 m ( - a , - b ,  lc) 

U = P 3 m l  N ( U ) = P 6 / m m m ( a , b ,  ½c) 

M=P3ml(a,b,~c). 
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As the subgroup index j  of M in N(G) equals 3, R~3m 
has three equivalent subgroups of type P3 m 1 (origins 
a t 0 , 0 , 0 ; ~  2 2.2 ~ 3, 3, 3, 3, 3, 3, referred to the unit cell of G). 
They are conjugate, because the index of Nc  (U)  = U 
in G equals 3. 

A subgroup U of a group G is called characteristic 
if U is mapped onto itself by each automorphism of 
G. G being a space group, U is characteristic if and 
only if U is mapped onto itself by all elements of 
NA(G), i.e. if the group-subgroup relation between 
G and U is of type (1) or (3) with respect to the 
affine normalizers. 

The problem of characteristic subgroups of space 
groups has been treated in some detail by Gubler 
(1982a). A general statement by Gubler (1982a, pp. 
114, 115) has to be corrected, however: If G is a 
space group with centered Bravais lattice and U is a 
class-equivalent subgroup of G with primitive Bravais 
lattice and the same conventional unit cell as G, then 
- in contrast to Gubler 's  statement - U need not be 
a characteristic subgroup of G. Gubler himself gives 
an example demonstrating the opposite (pp. 115, 
120): P3t and P32 are affine-equivalent subgroups of 
R3. For the same reason Gubler 's example on p. 115 
is not appropriate: P432 and P4232 are not charac- 
teristic subgroups of F432. From N ( F 4 3 2 ) =  
Pm3m(½a), N(P432)  = N(P4232) = lm3m and j = 4  
it follows immediately that P432 and P4232 belong 
to a class of four equivalent subgroups each. 

Gubler 's  example of space group R3 and its 
class-equivalent subgroups with index 3 is of special 
interest because the subgroup P3 has a normalizer 
other than P3~ and P32: 

G = R 3  N(G)=Z'31m(~a+lb,-½a+lb, /zc)  

U , =  P3 N ( U ~ ) =  Z'6/mmm(~a+½b,-½a+½b,/xe) 

U2 = P31 
N(U2) N(U3) ~ 2 , = = Z 622(~a +~b, 

U3 = P32 - l a  +½b,/.tc). 

The translation periods parallel to c are infinitesimal 
for all three normalizers. As N ( U I ) ~  N(G),  the 
group-subgroup relation R3-P3 is of type (3), i.e. 
P3 is a characteristic subgroup. On the contrary, the 
relations R3-P31 and R3-P32 refer to type (4). The 
common subgroup M of N(G) and N(U2) is ZI312 
with the same basis vectors as the normalizers. The 
index j of M in N(G) equals 2, i.e. there exist two 
equivalent subgroups, P3~ and P32. 

F43m has two supergroups Fm3m which differ with 
respect to their origins (0, 0, 0 and ¼, ~, ~, referred 
to the unit cell of F~,3m); they are mapped onto 
each other by the normalizer lm3m(½a) of F43m. 
Each group P222 with general metric has three 
supergroups of type Pccm which are not mapped onto 
each other by the Euclidean normalizer NE (P222) = 
Pmmm(½a, ½b, ½e), but by the affine normalizer 
NA(P222) = Pm3m(½a, ½b, ½c). 

The analogy between supergroup relations and sub- 
group relations is not complete, however. 

(i) A group-supergroup relation, in general, can- 
not be transferred from single groups to the complete 
class of space groups (if one restricts the supergroups 
to space groups and does not include additional affine 
groups isomorphic to space groups). Example: Only 
if the metric of a group of type Pmmm is cubic, has 
it a cubic supergroup Pro3. For each group Pmmm, 
however, there exists an affine analogue of Pro3 as 
supergroup. 

(ii) The classes of affine equivalent supergroups 
may contain, in addition to space groups, affine 
groups isomorphic to these space groups. Example: 
G = P222(a = b # c), V = P422(a = b # c). The affine 
normalizer Pm3m(½a, ½b, ½c) of P222 maps the three 
directions of the rotation axes onto each other. 
NA(G), therefore, generates from V two additional 
affine-equivalent supergroups with the affine 
analogues of the fourfold rotation axes running in 
the a or b direction. 

According to the relation between the normalizers 
of group and supergroup four cases may be distin- 
guished as for group-subgroup relations:* 

(1) N(G)= N(V).  

(2) N ( G ) c  N(V).  
In both cases each element of N(G) is contained 

in N(V) .  N ( G ) ,  therefore, maps V only onto itself 
and does not generate further equivalent supergroups. 
Examples: 

(i) G = Pmma 

V = Cmma 

(ii) G = P432 

V = F432 

(3) N ( G )  = N ( V )  

NE (G) = Pmmm(½a, ½b, ½c) 

NE (V) = Pmmm(½a, ½b, ½c) 

N(G) = lm3m 

N ( V )  = Pm3m(½a). 

5. Equiva lent  supergroups  

Equivalent supergroups of a space group may be 
defined in analogy to equivalent subgroups. 

Two supergroups V~ and V2 of a space group G 
are called Euclidean-equivalent (affine-equivalent) if 
they are mapped onto each other by the Euclidean 
(affine) normalizer of G. Examples: Each group 

* The main ideas of the present section and of this paper were 
first presented by the author on the occasion of the 23rd 
Diskussionstagung der Arbeitsgemeinschaft Kristallographie (Koch, 
1983). In connection with the derivation of non-characteristic 
orbits, Engel (1983) distinguishes between cases (1) and (2) on 
one side and (3) on the other in order to restrict the number of 
minimal supergroups that have to be considered. In fact, however, 
no restriction is achieved, because in cases (l) and (2) additional 
equivalent supergroups do not exist anyhow. The existence of case 
(4) is not mentioned by Engel. 
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The normalizer of G is a supergroup with index j 
of the normalizer of V. Then N(G)  may be subdivided 
into j cosets of N(V).  Each of these cosets [except 
N(V)  itself] maps V onto another supergroup of G 
(cf. Engel, 1983). If N(G)  is the Euclidean normalizer 
and V is a space group, all equivalent supergroups 
are space groups again. If N(G)  is the affine nor- 
malizer, the supergroups equivalent to space group 
V may be affine groups (cf. example above). 

Example (i) G = F23 N(G)  = Im3m(½a) 

V= Fd3 N( V) = Pn3m(½a), j =2. 

There exist two supergroups Fd3 which are mapped 
onto each other, e.g. by the centering translation of 
N(G)  with vector (¼,¼,¼). 

Example (ii) 

G = P m m 2  NE(G)=Z~mmm(½a,~b, txc) 

V = Pmmm NE (V) = Pmmm(~a, ½b, ½c). 

The index of Ne(G)  in NE(V) is infinite. Accord- 
ingly, there exist an infinite number of different super- 
groups Pmmm for each group Prom2. The mirror 
planes perpendicular to the c axis may be inserted at 
any height z within the unit cell of Prom2. 

(4) N ( G ) ¢  N(V)  andN(G);~ N(V)  
There exists a largest common subgroup M of 

N(G)  and N(V) .  The index of M in N(G)  gives 
the number of supergroups equivalent to V. 
Example ( cf. § 3): 

G = P 3 m l  N ( G ) = P 6 / m m m ( a , b ,  ½c) 

V= R3m N(V)  = R3m(-a ,  -b ,  ½c). 

The common subgroup M is P3ml(a ,  b, ½c). The 
index of M in N(G)  is 2. Each group P3ml,  there- 
fore, has two supergroups R3m which differ with 

respect to the setting of the rhombohedral lattice 
(reverse and obverse). 

For the classification of crystal structures it is 
necessary to derive for each crystal structure the corre- 
sponding idealized structure type with highest pos- 
sible symmetry. This has been called aristotype by 
B~irnighausen (1980). In this context the knowledge 
of all different but Euclidean- (or affine-) equivalent 
supergroups of a space group is of special interest, 
because such different supergroups may result in  
different aristotypes for a given crystal structure. 

I would like to thank Professor Dr Werner Fischer 
for many stimulating discussions and Professor Dr 
Hans Wondratschek for helpful remarks. 
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Abstrac t  

A new rapid method of comparing three-dimensional 
protein structures using the sequence of dihedral 
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angles is described. Systematic screening of protein 
structures by this method followed by detailed analy- 
sis reveals in particular that the calcium-binding pro- 
tein carp parvalbumin is similar to cytochrome C2 
from Rhodospirillum rubrum, cytochrome C is similar 
to hen lysozyme, carboxypeptidase A is similar to 
phage lysozyme. These results are completely unex- 
pected and show interesting correlation with the 
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